Bacterias multirresistentes en ecosistemas aislados, ¿existe alternativa terapéutica?

Autores/as

Palabras clave:

antibacterianos, farmacorresistencia bacteriana, genes bacterianos, metales pesados, regiones antárticas, océano

Resumen

Introducción:

La resistencia bacteriana genera un grave problema de salud debido al uso indiscriminado de antibióticos, esto ha causado la propagación de bacterias que codifican para la resistencia

Objetivo:

Describir los diferentes genes que codifican para la resistencia bacteriana, metales pesados y la nueva alternativa terapéutica para las bacterias multirresistentes

Métodos:

Se realizó una búsqueda de información en artículos en español, inglés y portugués relacionados con resistencia bacteriana en las bases de datos, Science Direct, Redalyc; Google Scholar, NCBI; Pubmed, Pro-quest Dialnet y Lilacs.

Conclusiones:

Se han descrito genes que codifican para farmacorresistencia a betalactámicos, macrólidos, aminoglucósidos, glicopéptido, se ha definido otro tipo de resistencia bacteriana hacia otros compuestos como a los metales pesados, se crean antibióticos para combatir bacterias multirresistentes, el cefiderocol, que actúa en la síntesis de las bacterias Gram negativas.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Diana Paola López, Universidad de Boyacá

Asesora. Bacterióloga y Laboratorista Clínica. Magíster en Ciencias Biológicas. Docente investigador. Universidad de Boyacá.

Valentina Tibaduiza Ballesteros, Universidad de Boyacá

Investigador principal. Estudiante de Bacteriología y Laboratorio clínico.

Maritza Angarita Merchán, Universidad de Boyacá

Asesora. Bacterióloga y Laboratorista clínica. Especialista en Administración y Gestión de Sistemas de Calidad. Magíster en Sistemas Integrados de Gestión. Docente -Investigador

Citas

Dirección Nacional del antártico Instituto antártico argentino. Programa Antártico Argentino Plan Anual Antártico 2018-2019 [Internet]. Argentina: Dirección nacional del Antártico Instituto antártico argentino; 2019 [citado 21 Nov 2021]. Disponible en: https://cancilleria.gob.ar/userfiles/ut/paa_2018_2019_0.pdf

Brat K, Sedlacek I, Sevcikova A, Merta Z, Laska K, Sevcik P. Imported anthropogenic bacteria may survive the Antarctic winter and introduce new genes into local bacterial communities. Pol Polar Res [Internet]. 2016 [citado 21 Nov 2021];37(1):89–104. Disponible en: https://journals.pan.pl/Content/99624/PDF/10183_Volume37_Issue1_05_paper.pdf?handler=pdf

Michaud L, Giudice A, Mysara M, Monsieurs P, Raffa C, Leys N, et al. Snow surface microbiome on the high antarctic plateau (DOME C). PLoS ONE [Internet]. 2014 [citado 21 Nov 2021];9(8):1–12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125213/

Calisto N, Gómez C, Muñoz P. Resistencia a antibióticos en bacterias recolectadas en agua de mar en las proximidades de bases antárticas. An Inst Patagon [Internet]. 2019 [citado 21 Nov 2021];46(3):29-39. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-686X2018000300029#:~:text=La%20presencia%20de%20resistencia%20a,con%20la%20proximidades%20del%20emisario.

Hatosy S, Martiny A. The Ocean as a Global Reservoir of Antibiotic Resistance Genes. Appl Environ Microbiol [Internet]. 2015 [citado 21 Nov 2021];81(21):7593-99. Disponible en: https://aem.asm.org/content/aem/81/21/7593.full-text.pdf

Rabbia V, Bello H, Jiménez S, Quezada M, Domínguez M, Vergara L, et al. Antibiotic resistance in Escherichia coli strains isolated from Antarctic bird feces, water from inside a wastewater treatment plant, and seawater samples collected in the Antarctic Treaty area. Polar Sci [Internet]. 2016 [citado 21 Nov 2021];(2):123–31. Disponible en: https://reader.elsevier.com/reader/sd/pii/S1873965216300160?token=D2D8979C0C8A89D6FAE803C0568489D08007638036AE963E7734440500B2A0B7366BAD941BBFCB752FDE5426B3D53653&originRegion=us-east-1&originCreation=20210423131249

Power L, Samuel A, Smith J, Stark S, Gillings R, Gordon M. Escherichia coli out in the cold: Dissemination of human-derived bacteria into the Antarctic microbiome. Environ Pollut [Internet]. 2016 [citado 21 Nov 2021];215:58–65. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0269749116302792

Hernández F, Calısto N, Gómez C, Gómez M, Ferrer J, González G, et al. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J Hazard Mater[Internet]. 2019 [citado 21 Nov 2021];363:447–56. Disponible en: https://doi.org/10.1016/j.jhazmat.2018.07.027

Hernández J, González D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol [Internet]. 2016 [citado 21 Nov 2021];6(1):32112. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149653/pdf/IEE-6-32112.pdf

Tan L, Li L, Ashbolt N, Wang X, Cui Y, Zhu X, et al. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci Total Environ [Internet]. 2018 [citado 21 Nov 2021];21:1176–84.Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0048969717328127?via%3Dihub

Laganà P, Caruso G, Corsi I, Bergami E, Venuti V, Majolino D, et al. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int J Hyg Envir Heal [Internet]. 2019 [citado 21 Nov 2021];222(1):89–100. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1438463918304255

Cerdà M, Moré E, Ayats T, Aguilera M, Muñoz S, Antilles N, et al. Do humans spread zoonotic enteric bacteria in Antarctica? Sci Total Environ [Internet]. 2019 [citado 21 Nov 2021];654:190–6. Disponible en: https://repositori.irta.cat/bitstream/handle/20.500.12327/668/Cerd%C3%A0-Cu%C3%A9llar_Do%20Humans_2019.pdf?sequence=1&isAllowed=y

Espejo W, Sandoval M, Celis J, López J, Riquelme F. Posibles implicancias ambientales debidio a la resistencia a Metales Pesados en bacterias aisladas de excretas del pingüino de Humboldt. Interciencia [Internet]. 2017 [citado 21 Nov 2021];42(5):324–30. Disponible en: https://www.redalyc.org/pdf/339/33952810010.pdf

Oromí J. Resistencia bacteriana a los antibióticos. Med Integral [Internet].2014 [citado 21 Nov 2021];36(10):367–405. Disponible en: https://www.elsevier.es/es-revista-medicina-integral-63-pdf-10022180

Acevedo R, Severiche C, Jaimes J. Bacterias resistentes a antibióticos en ecosistemas acuáticos. Rev P+L [Internet]. 2016 [citado 21 Nov 2021];10(2):160–72. Disponible en: http://www.scielo.org.co/pdf/pml/v10n2/v10n2a15.pdf

Kazmierczak K, Tsuji M, Wise G, Hackel M, Yamano Y, Echols R, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014). Int J Antimicrob Agents [Internet]. 2019 [citado 21 Nov 2021];53(2):177–84 .Disponible en: https://www.sciencedirect.com/science/article/pii/S0924857918302991?via%3Dihub

Okubo T, Ae R, Noda J, Iizuka Y, Usui M, Tamura Y. Detection of the sul2–strA–strB gene cluster in an ice core from Dome Fuji Station, East Antarctica. J Glob Anti microb Resist [Internet]. 2019 [citado 21 Nov 2021];17(1):72-8. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S2213716518302212

Pérez-Cano HJ, Robles-Contreras A. Aspectos básicos de los mecanismos de resistencia bacteriana. Rev Med MD [Internet]. 2013 [citado 21 Nov 2021];4.5(3):186-91. Disponible en: https://www.medigraphic.com/pdfs/revmed/md-2013/md133i.pdf

Van Goethem W, Pierneef R, Bezuidt I, Van De Peer Y, Cowan A, Makhalanyane P. A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome [Internet]. 2018 [citado 21 Nov 2021];6(40):1–12. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5824556/

McCann M, Christgen B, Roberts A, Su Q, Arnold E, Gray D, et al. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ Int [Internet]. 2019 [citado 21 Nov 2021];125:497–504. Disponible en: https://reader.elsevier.com/reader/sd/pii/S016041201832587X?token=670EA7B0F7CE269CC616F7007964ABB40AD77AF24F35790E1AC7511082962BDC85B1415A62060BE6959D7E64127B08DA

Rahman H, Sakamoto Q, Kitamura I, Nonaka L, Suzuki S. Diversity of tetracycline-resistant bacteria and resistance gene tet(M) in fecal microbial community of Adélie penguin in Antarctica. Polar Biol [Internet]. 2015 [citado 21 Nov 2021];38(10):1775–81. Disponible en: https://www.readcube.com/articles/10.1007/s00300-015-1732-x

Retamal P, Llanos S, Moreno L, López J, Vianna J, Hernández J, Medina G, Castañeda F, Fresno M, González D. Isolation of drug resistant Salmonella enterica serovar enteritidis strains in gentoo penguins from Antarctica [Internet]. Santiago, Chile: Universidad de Chile; 2017 [citado 20 Ago 2021]. Disponible en: http://repositorio.uchile.cl/handle/2250/148543 http://repositorio.uchile.cl/bitstream/handle/2250/148543/Isolation-of-drug-resistant-Salmonella-enterica.pdf?sequence=1&isAllowed=y

Santestevan A, de Angelis Zvoboda D, Prichula J, Pereira R, Wachholz R, Cardoso A, et al. Antimicrobial resistance and virulence factor gene profiles of Enterococcus spp. isolates from wild Arctocephalus australis (South American fur seal) and Arctocephalus tropicalis (Subantarctic fur seal). World J Microbiol Biotechnol [Internet]. 2015 [citado 21 Nov 2021];31(12):1935–46. Disponible en: https://link.springer.com/article/10.1007/s11274-015-1938-7

Pantüček R, Sedláček I, Indráková A, Vrbovská V, Mašlaňová I, Kovařovic V, et al. Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments. Appl Environ Microbiol [Internet]. 2018 [citado 21 Nov 2021];84(2):e01746-17. Disponible en: https://aem.asm.org/content/aem/84/2/e01746-17.full.pdf

Wang F, Stedtfeld D, Kim S, Chai B, Yang L, Stedtfeld M, et al. Influence of soil characteristics and proximity to antarctic research stations on abundance of antibiotic resistance genes in soils. Environ Sci Technol [Internet]. 2016 [citado 21 Nov 2021];50(23):12621–29. Disponible en: https://pubs.acs.org/doi/pdf/10.1021/acs.est.6b02863

Antelo V, Romero H, Batista S. Detection of integron integrase genes on King George Island, Antarctica. Advances in Polar Science [Internet]. 2015 [citado 21 Nov 2021];26(1):30–7. Disponible en: http://www.aps-polar.org/paper/2015/26/01/A20150104/full

Stark S, Corbett A, Dunshea G, Johnstone G, King C, Mondon A, et al. The environmental impact of sewage and wastewater outfalls in Antarctica: An example from Davis station, East Antarctica Water Res [Internet]. 2016 [citado 21 Nov 2021];105:602-14. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0043135416307035?via%3Dihub

Rodriguez S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez A, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res [Internet]. 2015 [citado 21 Nov 2021];69(1):234–42. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S004313541400791X

Vindel A, Cercenado E. Staphylococcus aureus resistentes a la meticilina portadores del gen mecC: ¿un problema emergente? Enferm Infecc Microbiol Clin [Internet]. 2016 [citado 21 Nov 2021];34(5):277–79. Disponible en: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-pdf-S0213005X16000513

López D, Torres I, Prada F. Genes de resistencia en bacilos Gram negativos: Impacto en la salud pública en Colombia. Univ Salud [Internet]. 2016 [citado 21 Nov 2021];18(1):190–202. Disponible en: http://www.scielo.org.co/pdf/reus/v18n1/v18n1a18.pdf

Pakzad I, Zayyen M, Taherikalani M, Boustanshenas M, Lari R. Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients. GMS Hygiene and Infection Control [Internet]. 2013 [citado 21 Nov 2021];8(2):1–6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850228/pdf/HIC-08-15.pdf

Troncoso C, Pavez M, Santos A, Salazar R, Barrientos L. Implicancias Estructurales y Fisiológicas de la Célula Bacteriana en los Mecanismos de Resistencia Antibiótica. Int J Morphol [Internet]. 2018 [citado 21 Nov 2021];35(4):1214–23. Disponible en: https://scielo.conicyt.cl/pdf/ijmorphol/v35n4/0717-9502-ijmorphol-35-04-01214.pdf

Na G, Zhang W, Zhou S, Gao H, Lu Z, Wu X, et al. Sulfonamide antibiotics in the Northern Yellow Sea are related to resistant bacteria: Implications for antibiotic resistance genes. Mar Pollut Bull [Internet]. 2014 [citado 21 Nov 2021];84(1-2):70-5. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0025326X14003178?via%3Dihub

Sellera P, Fernandes R, Moura Q, Souza A, Cerdeira L & Lincopan N. Draft genome sequence of Enterobacter cloacae ST520 harbouring blaKPC-2, blaCTX-M-15 and blaOXA-17 isolated from coastal waters of the South Atlantic Ocean. J Glob Antimicrob Resist [Internet]. 2017 [citado 21 Nov 2021];10:279–80. https://www.sciencedirect.com/science/article/abs/pii/S2213716517301455?via%3Dihub

Jaktaji R, Ebadi R. Study the expression of marA gene in ciprofloxacin and tetracycline resistant mutants of Esherichia coli. Iran J Pharm Sci [Internet]. 2013 [citado 21 Nov 2021];12(4):923–8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920692/pdf/ijpr-12-923.pdf

Salgado I, Carballo M, Martínez A, Cruz M, Durán C. Interacción de aislados bacterianos rizosféricos con metales de importancia ambiental. Tecnol Cienc Agua [Internet]. 2012 [citado 21 Nov 2021];3(3): 83-95. Disponible en: http://www.scielo.org.mx/pdf/tca/v3n3/v3n3a6.pdf

González M, Urtubia R, Del Campo K, Lavín P, Wong C, Cárdenas A., et al. Antibiotic and metal resistance of cultivable bacteria in the Antarctic sea urchin. Antarct Sci [Internet]. 2016 [citado 21 Nov 2021];28(4):261-8. Disponible en: https://www.cambridge.org/core/journals/antarctic-science/article/abs/antibiotic-and-metal-resistance-of-cultivable-bacteria-in-the-antarctic-sea-urchin/C4386D8F81EC557B3DBB6C54CF6EE6D2

Mangano S, Michaud L, Caruso C, Lo Giudice A. Metal and antibiotic resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biol [Internet]. 2014 [citado 21 Nov 2021];8(1):227–35. Disponible en: https://link.springer.com/article/10.1007/s00300-013-1426-1

Rodríguez Rojas F, Díaz Vásquez W, Undabarrena A, Muñoz Díaz P, Arenas F, Vásquez C. Mercury-mediated cross-resistance to tellurite in Pseudomonas spp. isolated from the Chilean Antarctic territory. Metallomics [Internet]. 2016 [citado 21 Nov 2021];8(1):108-17. Dsiponible en: https://pubs.rsc.org/en/content/articlelanding/2016/mt/c5mt00256g#!divAbstract

Romaniuk K, Ciok A, Decewicz P, Uhrynowski W, Budzik K, Nieckarz M, et al. Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biol [Internet]. 2018 [citado 21 Nov 2021];41(7):1319–33. Disponible en: https://link.springer.com/content/pdf/10.1007/s00300-018-2287-4.pdf

Cho Y, Cho A, Hong G, Choi G, Kim S. Draft Genome Sequence of Arthrobacter oryzae TNBS02, a Bacterium Containing Heavy Metal Resistance Genes, Isolated from Soil of Antarctica. Microbiol. Resour Announc [Internet]. 2019 [citado 21 Nov 2021];8(4):01–18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346191/pdf/MRA.01501-18.pdf

Rodríguez F, Tapia P, Castro E, Undabarrena A, Muñoz P, Arenas M, et al. Draft Genome Sequence of a Multi-Metal Resistant Bacterium Pseudomonas putida ATH-43 Isolated from Greenwich Island, Antarctica. Front Microbiol [Internet]. 2016 [citado 21 Nov 2021];7:1–5. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099816/pdf/fmicb-07-01777.pdf

Zhang G, Yang Y, Wang L. Alterery throbacter aurantiacus sp. nov., isolated from deep-sea sediment. ANTON LEEUW INT J G [Internet]. 2016 [citado 21 Nov 2021];64(1):116–21. Disponible en: https://link.springer.com/article/10.1007/s10482-016-0726-1

Wu H, Cheng H, Zhou P, Huo Y, Wang S, Xu X. Complete genome sequence of the heavy metal resistant bacterium Altererythrobacter atlanticus 26DY36T, isolated from deep-sea sediment of the North Atlantic Mid-ocean ridge. Mar Genomics [Internet]. 2015 [citado 21 Nov 2021];24(3):289-92. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S1874778715300374

Vallejo M, Ledesma P, Ibañez C, Aguirre L, Parada R, Vallejo B, et al. Resistencia a metales pesados, antibióticos y factores de virulencia en cepas de Enterococcus aisladas en la provincia del Chubut, Argentina. Rev Soc Ven Microbiol [Internet]. 2016 [citado 21 Nov 2021];36(1):16–22. Disponible en: http://ve.scielo.org/pdf/rsvm/v36n1/art05.pdf

Samanta A, Bera P, Khatun M, Sinha C, Pal P, Lalee A & Mandal A. An investigation on heavy metal tolerance and antibiotic resistance properties of bacterial strain Bacillus sp. isolated from municipal waste. J Microbiol Biotechn. 2012[citado 21 Nov 2021];2(1):178-189. Disponible en: https://www.researchgate.net/publication/258885867_An_investigation_on_heavy_metal_tolerance_and_antibiotic_resistance_properties_of_bacterial_strain_Bacillus_sp_isolated_from_municipal_waste/link/00b495295b1c54a851000000/download

Ito A, Nishikawa T, Matsumoto S, Yoshizawa H, Sato T, Nakamura R, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 2016 [citado 21 Nov 2021];60(12):7396-401. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119021/pdf/zac7396.pdf

Ito A, Sato T, Ota M, Takemura M, Nishikawa T, Toba S, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother[Internet]. 2018 [citado 21 Nov 2021];62(1):4–17. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740388/pdf/e01454-17.pdf

Wright H, Bonomo A, Paterson L. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn?. Clin Microbiol Infect [Internet]. 2017 [citado 21 Nov 2021];23(10):704–12. Disponible en: https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(17)30495-0/fulltext

Mischnik A, Lübbert C, Mutters T. Neue β‑Laktam-Antibiotika und β‑Laktamase-Inhibitoren gegen multiresistente Gram-negative Erreger. Der Internist [Internet]. 2018 [citado 21 Nov 2021];59(12):1335–43. Disponible en: https://link.springer.com/article/10.1007%2Fs00108-018-0508-0

Descargas

Publicado

30-06-2021

Cómo citar

1.
López DP, Tibaduiza Ballesteros V, Angarita Merchán M. Bacterias multirresistentes en ecosistemas aislados, ¿existe alternativa terapéutica?. Medimay [Internet]. 30 de junio de 2021 [citado 23 de noviembre de 2024];28(2):259-72. Disponible en: https://revcmhabana.sld.cu/index.php/rcmh/article/view/1622

Número

Sección

Artículos de Revisión