Terapéutica de la COVID-19 basada en la estructura del SARS-CoV-2
Palabras clave:
coronavirus, COVID-19, SARS-CoV-2, proteína S, vacunas, terapéutica.Resumen
Introducción:
El conocimiento de la estructura y la biología molecular del SARS-CoV-2, es importante para el diseño y la aplicación de fármacos contra la COVID-19.
Objetivo:
Describir la terapéutica de la COVID-19, basada en la estructura del SARS-CoV-2.
Métodos:
Se realizó una revisión integradora, no sistemática con los descriptores de DeCS en Google Académico, The Lancet, PubMed Central y SciELO, de artículos en español e inglés, publicados en 2020 y 2021.
Conclusiones:
Entre los fármacos contra la COVID-19, basados en la estructura del SARS-CoV-2, se encuentran anticuerpos monoclonales, inhibidores de la fusión de proteasa y de la replicación viral y, las vacunas. Los principales anticuerpos empleados son: bamlanivimab, etesevimab, casirivimab, imdevimab y meplazumab; entre los inhibidores: remdesivir, favipiravir, lopinavir, umifenovir, camastat y péptidos (EK1, EK1C4 y HD5). Las plataformas vacunales emplean subunidades proteicas, partículas semejantes a virus, vectores virales, ácidos nucleicos y virus inactivados o atenuados.
Descargas
Citas
Jiang HDC, Tao YY, Jia SY, Li JX, Zhu FC. Coronavirus disease 2019 vaccines: landscape of global studies and potential risks. Chin Med J (Engl) [Internet]. 2021[citado 17 Abr 2022]; 134(17): 2037–44. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440017/pdf/cm9-134-2037.pdf
World Health Organization[Internet]. Ginebra: WHO; c 2022. [actualizado 15 Jun 2022; citado 1 Oct 2021]. Disponible en: https://covid19.who.int
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: the status and perspectives in delivery points of view. Adv Drug Deliv Rev[Internet]. 2021[citado 17 Abr 2022];170:1-25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7759095/pdf/main.pdf
Ehianeta T, Mzee SAS, Adebisi MK, EhianetaO. Recent SARS-CoV-2 Outlook and Implications in a COVID-19 Vaccination Era. Infectious Microbes &D iseases[Internet]. 2021[citado 17 Abr 2022];3(3): 125–33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454280/pdf/im9-3-125.pdf
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews. 2021; 19: 141- 54. doi: https://doi.org/10.1038/s41579-020-00459-7
Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines. 2021; 20(1):1–22. doi: https://doi.org/10.1080/14760584.2021.1875824
Altawalah H. Antibody Responses to Natural SARS-CoV-2 Infection or after COVID-19 Vaccination. Vaccines (Basel). 2021; 9(8): 910. doi: https://doi.org/10.3390/vaccines9080910
Anand U, Jakhmola S, Indari O, Jha HC, Chen Z-S, Tripathi V, Pérez de la Lastra JM. Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Front Immunol[Internet]. 2021[citado 17 Abr 2022]; 12:658519. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278575/pdf/fimmu-12-658519.pdf
Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, et al. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct Target Ther. 2021;6: 317.doi: https://doi.org/10.1038/s41392-021-00733-x
Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell MolImmunol. 2021; 8:2293 – 306. doi: https://doi.org/10.1038/s41423-021-00752-2
Shahzamani K, Mahmoudian F, Ahangarzadeh S, Ranjbar MM, Beikmohammadi L, Bahrami S, et al. Vaccine design and delivery approaches for COVID-19. IntImmuno Pharmacol. 2021; 100: 108086. doi: https://doi.org/10.1016/j.intimp.2021.108086
Castro Dopico X, Ols S, Loré K, Hedestam GBK. Immunity to SARS‐CoV‐2 induced by infection or vaccination. J Intern Med[Internet]. 2021[citado 17 Abr 2022];00:1–19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447342/pdf/JOIM-9999-0.pdf
Triggle CR, Bansal D, Ding H, Islam MM, Farag EABA, Hadi HA, et al. A Comprehensive review of Viral characteristics, transmission, pathophysiology, immune Response, and managementof SARS-CoV-2 and COVID-19 as a Basis for controlling the pandemic. Front Immunol[Internet]. 2021[citado 17 Abr 2022];12:631139. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7952616/pdf/fimmu-12-631139.pdf
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev[Internet].2021[citado 17 Abr 2022];170:113–41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789827/pdf/main.pdf
Lozada-Requena I y Núñez Ponce C. COVID-19: respuesta inmune y perspectivas terapéuticas. Revista Peruana de Medicina Experimental y Salud Pública [Internet]. 2020 [citado 17 Abr 2022];37 (2): 312-9. Disponible en: https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/5490/3723
De P, Chakraborty I, Karna B, Mazumder N. Brief review on repurposed drugs and vaccines for possible treatment of COVID-19. Eur J Pharmacol[Internet]. 2021[citado 17 Abr
;898:173977. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7905377/
Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses[Internet]. 2021[citado 17 Abr 2022];13(2):202. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911532/pdf/viruses-13-00202.pdf
Raskin S. Genetics of COVID-19. J Pediatr (Rio J). [Internet]. 2021[citado 17 Abr 2022]; 97 (4): 378-86. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7539923/
Jia Z, Gong W. Will Mutations in the Spike Protein of SARS-CoV-2 Lead to the Failure of COVID-19 Vaccines? J Korean Med Sci[Internet]. 2021[citado 17 Abr 2022];36(18):e124. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8111046/pdf/jkms-36-e124.pdf
Martínez-Flores D, Zepeda-Cervantes J, Cruz-Resendiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front Immunol[Internet]. 2021[citado 17 Abr 2022];12:701501. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8311925/pdf/fimmu-12-701501.pdf
Xiang R, Yu Z, Wang Y, Wang L, Huo S, Li Y, et al. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharm Sin B[Internet]. 2021[citado 17 Abr 2022];2:[aprox. 6 p.]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260826/pdf/main.pdf
Krumm ZA, Lloyd GM, Francis CP, Nasif LH, Mitchell DA, Todd E. Golde, et al. Precision therapeutic targets for COVID-19. Virol J. 2021;18: 66. doi: https://doi.org/10.1186/s12985-021-01526-y
Gouvêa dos Santos W. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed Pharmacother[Internet]. 2021[citado 17 Abri 2022]; 136: 111272.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802525/pdf/main.pdf
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Kotfis K, Ghavami S, Łos MJ. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist Updat. 2020; 53:100719. doi: https://doi.org/10.1016/j.drup.2020.100719
Bok K, Sitar S, Graham BS, Mascola JR. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity[Internet]. 2021[citado 17 Abr 2022];54(8): 1636–51. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328682/pdf/main.pdf
Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J[Internet]. 2021[citado 17 Abr 2022];23(1): 14. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7784226/pdf/12248_2020_Article_532.pdf
Beeraka NM, Tulimilli SV, Karnik M, Sadhu SP, Pragada RR, Aliev G, et al. The Current Status and Challenges in the Development of Vaccines and Drugs against Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2). Biomed Res Int[Internet]. 2021[citado 17 Abr 2022]; 2021:8160860. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8168478/pdf/BMRI2021-8160860.pdf
Wang M-Y, Zhao R,Gao L-J, Gao X-F, Wang D-P, Cao J-M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol[Internet]. 2020[citado 17 Abr 2022];10:587269. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723891/
Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol[Internet]. 2021[citado 17 Abr 2022];21:382–93. Disponible en: https://doi.org/10.1038/s41577-021-00542-x
Pashaei M, Rezaei N. Immunotherapy for SARS-CoV-2: potential opportunities, Expert Opinion on Biological Therapy[Internet]. 2020[citado 17 Abr 2022]; 20:10: 1111-6. Disponible en: https://www.tandfonline.com/doi/full/10.1080/14712598.2020.1807933
Zuo L, Ao G, Wang Y, Gao M, Qi X. Bamlanivimab improves hospitalization and mortality rates in patients with COVID-19: a systematic review and meta-analysis. Journal of Infection[Internet]. 2021[citado 17 Abr 2022];84(2):20. Disponible en: https://www.journalofinfection.com/action/showPdf?pii=S01634453%2821%2900477-1
Kuritzkes DR. Bamlanivimab for Prevention of COVID-19. JAMA[Internet]. 2021[citado 17 Abr 2022];326(1):31-2. Disponible en: https://jamanetwork.com/journals/jama/fullarticle/2780873
Cohen MS, Nirula A, Mulligan M, Novak R, Marovich M, Stemer A, et al. Bamlanivimab prevents COVID-19 morbidity and mortality in nursing-home setting. Topics in Antiviral Medicine[Internet]. 2021[citado 17 Abr 2022];29(1):32-3. Disponible en: https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-1250038
U.S. Food and Drug Administration (FDA) [Internet]. Washington, D.C: U.S. Department of Health and Human Services c 2022. [; actualizado17 Abr 2022; citado 29 Sep 2021]. Disponible en: https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/emergency-use-authorization#coviddrugs
Sherchan R, Cannady, Jr P. Casirivimab. 2021 Jun 21. En: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34283490
Ruckmani A, Ilamathi K, Kumar R A, Kumar PU. COVID-19: A Review of Clinical Trials and Repurposed Drugs. Int J Nutr Pharmacol Neurol Dis [Internet].2021 [citado 17 Abr 2022];11:27-40. Disponible en: https://www.ijnpnd.com/article.asp?issn=2231-0738;year=2021;volume=11;issue=1;spage=27;epage=40;aulast=Ruckmani
Awadasseid A, Wu Y, Tanaka Y, Zhang W. Effective drugs used to combat SARS-CoV-2 infection and the current status of vaccines. Biomed Pharmacother[Internet]. 2021[citado 17 Abr 2022];137:111330. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843108/pdf/main.pdf
Younis NK, Zareef RO, Fakhri G, Bitar F, Eid AH, Arabi M. COVID-19: potential therapeutics for pediatric patients. PharmacolRep[Internet]. 2021. [citado 17 Abr 2022];73: 1520–38. Disponible en: https://link.springer.com/article/10.1007/s43440-021-00316-1
Chilamakuri R, Agarwal S. COVID-19: Characteristics and therapeutics. Cells. 2021 ;10(2): 206. doi: https://doi.org/10.3390/cells10020206
Solís Sánchez M. Revisión sistemática de inmunopatogenia y vacunas Covid-19 (SARS-CoV-2): PCR, respuesta inmunitaria, vacunas. Química Central. 2021;7(1):56–83. doi: https://doi.org/10.29166/quimica.v7i1.2914
World Health Organization[Internet]. Ginebra WHO; 2021 Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. Guidance Document 29 September 2021. [citado 17 Abr 2022]. Disponible en: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_29Sept2021_0.pdf
Ndwandwe D, Wiysonge CS. COVID-19 vaccines. Current Opinion in Immunology. 2021;71:111–6. Disponible en: https://doi.org/10.1016/j.coi.2021.07.003
Shaukat A, Hussain K, Shehzadi N. Vacunas contra la COVID-19: desarrollo, estrategias, tipos y reticencia al uso de la vacunación. Vacci Monitor[Internet]. 2021[citado 17 Abr 2022]; 30(3): 145-2. Disponible en: https://vaccimonitor.finlay.edu.cu/index.php/vaccimonitor/article/view/279
Forni G, Mantovani A, Moretta L, Rappuoli R, Rezza G, Bagnasco A, et al. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ[Internet]. 2021[citado 17 Abr 2022];28(2): 626–39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818063/
Sharma K, Koirala A, Nicolopoulos K, Chiu C, Wood N, Britton PN. Vaccines for COVID-19: Where do we stand in 2021? Paediatric Respiratory Reviews. 2021;39: 22-31. doi: https://doi.org/10.1016/j.prrv.2021.07.001
Mehmood I, Ijaz M, Ahmad S, Ahmed T, Bari A, Abro A, et al. SARS-CoV-2: an update on genomics, risk assessment, potential therapeutics and vaccine development. Int J Environ Res Public Health[Internet]. 2021 [citado 17 Abr 2022];18(4): 1626. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7915969/pdf/ijerph-18-01626.pdf
Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, et al. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int J Biol Macromol[Internet]. 2021 [citado 17 Abr 2022];188: 740–50. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364403/pdf/main.pdf
Wu Q, Dudley MZ, Chen X, Bai X, Dong K, Zhuang T, et al. Evaluation of the safety profile of COVID-19 vaccines: a rapid review. BMC Med[Internet]. 2021[citado 17 Abr 2022];19: 173.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8315897/